

Integration of Airport Surface Communication Systems

Yang Wang

Lockheed Martin Transportation and Security Solutions

Yiyuan J. Zhao

University of Minnesota

NASA ICNS Conference 2005

May 2 – 5, Fairfax, Virginia

Outline of Presentation

- Introduction
- Methodology
- A Communication Reference Model
- Future Research Efforts
- Summary

- Airport Surface Congestion
 - A key traffic capacity problem NAS
- Information about Surface Movement
 - Maintained through controller observation
 - VHF voice communications
- Flight Planning & Scheduling, Gate Management,
 Control, and Servicing of Aircraft
 - Lack of easily accessible, integrated planning information
 - Results in inefficiencies

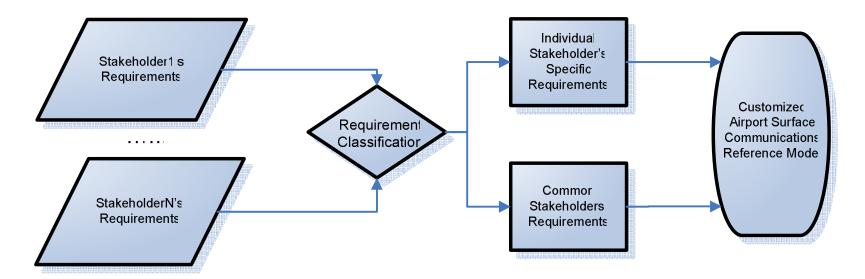
Introduction (cont.)

- Dedicated & Separate Comm Systems Architectures
 - No system-wide interoperability and information sharing
- Stakeholders Build Own Comm Infrastructures
 - Self-independent
 - Lack the flexibility for needed data exchange with others
- Analog VHF Communication Systems
 - Only for voice
 - Inability to transmit operational data or to dynamically establish groups of users
 - Lack of necessary real-time collaborations among stakeholders for special events where information sharing is paramount

Introduction (cont.)

- What Do We Want?
 - Fully integrated communication services to all stakeholders at airport surfaces
 - To improve the airport surface operations by dynamic planning of surface movement
 - To maximize airport throughput
 - A common communication infrastructure
 - For all the stakeholders
 - While meeting stakeholders' individual needs
 - A scalable, flexible, & secure comm. infrastructure
 - Meet current and future needs

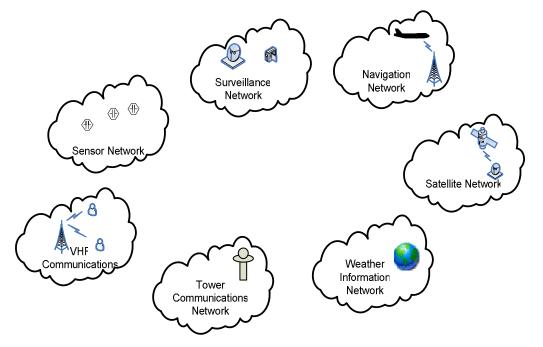
Introduction (cont.)


- A Common Comm Infrastructure Has
 - A complete set of requirements
 - Different stakeholders for airport surface operations
 - Collected via system engineering methodology
 - A communication reference model
 - Meet current and future requirements
 - Functional entities, interfaces between entities, etc.
 - Technologies applicable to the model

Methodology for Collecting Requirements

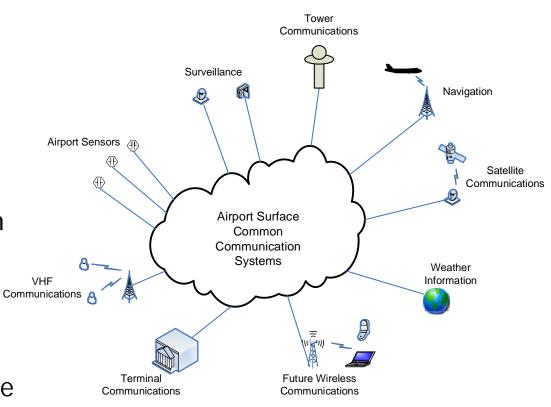
- Many System Engineering Tools Available
 - For analyzing stakeholders' requirements
- Simplified Version to Discuss Proposed Methodology
 - Purpose is to capture all requirements from stakeholders

Methodology (cont.)

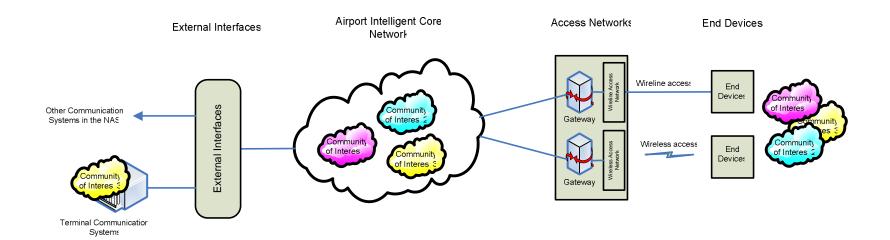


- Requirements From Each Stakeholder
 - Can be classified into two major categories:
 - Common requirements
 - communication systems features common to all airport surface stakeholders
 - Specific requirements
 - specific, non-common needs for each individual stakeholder
- Based on the two major categories:
 - identify and characterize stakeholder needs
 - customize the communication reference model
- Another set of requirements
 - shared by some, but not all stakeholders
 - derive from the two categories of requirements

- Airport Surface Communication Systems Consist of Various Disparate Networks
 - VHS Communications Network
 - Navigation Network
 - Surveillance Network
 - Sensor Network
 - Tower Communications Network
 - Weather Information Network
 - Satellite Network



Integrating Disparate Networks


- The Disparate Networks Can Be Integrated
 - use the advanced IP networking technologies
- use the same communications infrastructure for all stakeholders
- distribute the information data through the same communications infrastructure
- provide the logical separation of traffic to the appropriate destinations

A Communication Reference Model

- Propose a Communication Reference Model
 - To consolidate the networks into one
- Reference Model Consists of Four Components
 - End Devices, Access Networks
 - Intelligent Core Network, External Interfaces

A Communication Reference Model (cont.)

- End Devices
 - A wide range of end devices, such as surveillance radar, ground and gate service crew's voice and data communications devices, etc.
- Access Networks
 - Include wireless (radio) access networks and wired access networks
 - Is Ubiquitous
 - Provide the mechanics for end devices to access the Intelligent Core Network
- Intelligent Core Network
 - Provide intelligent switching functions
 - Provide necessary services such as the creation of Community of Interest groups
- External Interfaces
 - Provides the ability to connect with other communication systems in the NAS. e.g. seamlessly integrated with Terminal Communications

A Communication Reference Model (cont.)

Benefits

- Provide a unique way to integrate disparate networks into one, for airport surface operation communications
- Allocate mission critical and non-critical voice, data, and video requirements to different design components
- Leverage the ubiquitous access methods to support multiple mission critical and non-critical voice, data, and video for various stakeholders
- Provide a framework to create and maintain various levels of communications based on Communities of Interest among stakeholders
- Provide the flexibility to seamlessly migrate to the new technologies

Future Research Efforts

- A Functional Framework
 - Examine functional entities required by the airport surface communications systems
 - Define the potential interfaces among these entities.
- Interoperability among Different Physical Communication Technologies
 - Wireless (VHF, CDMA, etc.)
 - Satellite network (GPS, etc.).
- Impacts of IPv6 & Other Emerging Technologies
 - on the systems

- Propose Integrating Disparate Networks Into One
 - For airport surface operation communications
- A Requirement Analysis Methodology
 - Capture all stakeholder requirements
 - Understand specific airport surface operation communications needs for each stakeholder
- A Viable Comm Architecture & Services Solution
 - A communication reference model as an initial step
- Further Studies Are Needed
 - To develop a functional architecture framework
 - To address potential issues associated with the architecture

A&D

